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Abstract. Protein binding sites are regions where interactions between
a protein and ligand take place. Identification of binding sites is a func-
tional issue especially in structure-based drug design. This paper aims
to present a novel feature of protein binding pockets based on the com-
plexity of corresponding weighted Delaunay triangulation. The results
demonstrate that candidate binding pockets obtain less relative Von Neu-
mann entropy which means more random scattering of voids inside them.
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1 Introduction

Proteins mainly accomplish their biological activities in interaction with other
molecules. Meanwhile these interactions, only some of surface atoms of the pro-
tein get involved. Thus identifying these regions, binding sites, help scientists to
study the mechanism of interactions and protein performance very well. More-
over, identification of binding sites is known as the basis of structure-based drug
design [1,2].

In recent years, various computational methods have been introduced and
developed for the purpose of finding protein pockets which results in predict-
ing protein binding sites. Generally these methods can be classified into two
types: energy-based and geometry-based methods. Geometry-based algorithms
themselves are classified to grid-based [3,4,5], sphere-based [6,7] and alpha-shape
based [8,9] types. Besides, consensus methods [10,11] have been proposed re-
cently in which some previous pocket detecting methods are combined together
in order to improve the prediction success rate entirely.

Usually many pockets are found for each protein and definitely not all of
them can be regarded as real binding sites. Therefore, it is necessary to evaluate
those pockets according to a ranking method and report the top-rated cases.
Pocket size, the number of atoms forming the pocket, is a widely used ranking
criterion; however, past studies [12,4] elucidated that some real binding sites
are disregarded when protein pockets are evaluated only by their size, especially
when top ranked candidates have tiny diversity in size.
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Comprehensive studies have been performed recently to extract novel features
of protein binding pockets beside their size to improve the past prediction results.
In [4] the degree of the conservation of involved surface residues in pockets was
studied to report TOP1 pocket among TOP3 largest cases. In addition to pocket
size, distance from the protein centroid, sequence conservation and the number
of hydrophobic residues are chosen as the ranking criteria both in combination
with each other and solely in [13].

The most substantial issue is that although shape of pockets and related
features have been examined in previous works, up to our knowledge, the ar-
rangement of atoms consisting the protein pockets have not been considerably
discussed before. The main contribution of this paper is examining the complex-
ity of protein binding pockets in comparison with other pockets. This leads to
achieve a novel feature of binding sites which finally help us to predict them. To
accomplish that, in this study we make use of weighted Delaunay triangulation
of protein atoms which results in a geometric graph sensitive to the location of
each atom. Afterward, the complexity of those graphs are analyzed by a useful
complexity measure, Von Neumann entropy. Results show that candidate bind-
ing pockets usually obtain less relative Von Neumann entropy and consequently
more disorderliness in their structure.

2 Preliminaries

In this section, basic concepts that are necessary for next part are introduced.
First, some computational geometry tools both for bare and weighted points are
reviewed. Secondly, matrix representation of graphs and related definitions in
linear algebra are discussed.

Given a set of finite points P = {p1, p2, . . . , pn} in the space, called sites, the
Voronoi diagram is the set of cells, Vi, 1 ≤ i ≤ n, defined by:

Vi = {p| |p− pi| ≤ |p− pj | , 1 ≤ j ≤ n} .
In other word, Voronoi diagram is a subdivision of the space into n cells. Each cell
in this diagram corresponds to a site in P , under the condition that all points in
cell Vi are closer to their corresponding site pi rather than any other sites. If the
sites lie in general position meaning that no three sites on a line, no four sites on
a circle and no five sites on a sphere, then the dual graph of the Voronoi diagram
results in a unique geometric graph called Delaunay triangulation in which sites
are considered as vertices and edges are drawn between any two vertices whose
corresponding cells are adjacent.

Let Pw = {pw1 , pw2 , . . . , pwn} be a set of weighted points where point pwi can be
denoted as a spherical ball bi = b(zi, ri)with center zi ∈ R

3and radius ri . The
distance of a point x ∈ R

3 and a ball b = b(z, r) is formulated as:

πb (x) = |z − x|2 − r2.

Now the weighted Voronoi diagram (Power diagram) is defined by:

Vbi (p) =
{
p ∈ R

3 | πbi (p) ≤ πbj (p) , 1 ≤ j ≤ n
}
.
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Fig. 1. Left: Weighted Voronoi diagram for a set of balls. Right: Weighted Delaunay
triangulation for the same set of balls.

Such as the previous case, weighted Delaunay triangulation (Regular triangula-
tion) can be obtained by the dual shape of weighted Voronoi diagram (see Fig
1).

Let G(E, V ) be a simple graph with n vertices and m edges. Adjacency matrix
A(G) is an n × n matrix in which Auv = Avu = 1 if two vertices u and v are
adjacent and Auv = Auv = 0 otherwise. Degree matrixD(G) is an n×nmatrix in
which diagonal element Duu resembles the degree of vertex u and other elements
are zero. Laplacian matrix L(G) is defined as:

L (G) = D (G)−A (G) .

Density matrix (G) is a normalized form of Laplacian matrix and is defined by
the following relation:

ρ (G) =
1

tr [L (G)]
L (G)

where tr[L(G)] is the sum of elements on the main diagonal of matrix L(G). The
trace of Laplacian matrix for each graph is equaled to the sum of all the vertices
degree. Thus the previous relation is equaled to the following relation:

ρ (G) =
1

2m
L (G) .

3 Methods and Materials

3.1 Protein Pocket Structure

We used CASTp [14] to detect protein pockets. In this method, protein atoms are
modeled as spherical balls (weighted points). Weighted Voronoi diagram is com-
puted for this set based on the concepts explained in preliminaries. Next, ResB
is defined as ResB = {Vb∩b|b ∈ B} (Fig 2.left). Like Delaunay triangulation, by
connecting the centers of neighboring regions in ResB a graph called CpxB is
acquired (Fig 2.middle). Obviously CpxB ⊆ DelB. Afterwards, spherical balls
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simultaneously get bigger based on the variation of a parameter α. CpxBα grows
as α increases until it gets to DelB. Pockets are informally defined as compo-
nents in DelB − CpxB which become voids before getting disappeared as their
corresponding balls grow based on changes in α.

Briefly, Flow relation is utilized to find protein pockets in CASTp (Fig 2.right).
Cell ρ has a flow to its neighboring cell σ if the Voronoi center of ρ locates in
the opposite side of the plane passing through the common face between ρ and
σ. Sinks are defined as cells containing their own Voronoi centers. Pockets are
defined as a set of cells which directly or indirectly flow to a sink. Thus it is
sufficient to find sinks and their corresponding flows to detect pockets. Fig 2 is
adopted from [8].

S

S S
S

S S

S

Fig. 2. Left:Res B, Middle: Cpx B, Right: Flow Relation (sinks are shown by S)

For each protein pocket we consider its graph consisting of vertices and edges
corresponding to the centers of balls and Delaunay edges respectively. Then the
adjacency matrix of these graphs is easily computed according to the definitions
in preliminaries section.

3.2 Von Neumann Entropy

Information theoretical methods are common to compare complexity of net-
works. Shannon entropy is one of the representative network complexities which
is defined by:

H (X) = H (p1, p2, . . . , pn) = −
∑

i

pi log pi

where X is a random variable with probability distribution p1, p2, . . . , pn.
Entropy is widely used in various spheres, such as biology and chemistry, to
measure complexity of graphs [15,16]. One approach to accomplish that is parti-
tioning graph vertices to some classes {Xi} such that the ratio of partitions size

to graph vertices, |Xi|
|X| , results in a probability distribution. Shannon entropy of

graphs is calculated for that probability distribution by:

H (G) = −
∑

i

|Xi|
|X | log

( |Xi|
|X |

)
.
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However, there is no unique form to partition graphs and consequently different
entropic measures can be assigned to them. Von Neumann entropy which is
calculated by eigenvalues of a graph Laplacian matrix is a useful complexity
measure while studying graphs [17]. Formally, Von Neumann entropy for any
density matrix ρ is defined by:

S (ρ) = −tr (ρ log ρ) = −
∑

i

λilogλi.

Density matrix can be computed for graphs by the definition provided in prelim-
inaries. Based on [17], Von Neumann entropy for an arbitrary graph G increases
as edges of the graph scatter more randomly. In a study [17] of four different
kinds of graphs with maximum twenty vertices, the smallest entropy is obtained
for complete graph then it increases for star, random and perfect matching re-
spectively. By Von Neumann entropy the complexity of graphs can be computed
directly from their structures.

While examining the complexity of pockets, it is important to ignore any other
parameters, size of corresponding graphs for instance. On the other hand, Von
Neumann entropy of graphs increases as they grow in size and this also hap-
pens when studying different pockets with different sizes. To avoid this problem,
relative Von Neumann entropy is utilized instead of its primary form as:

S (ρ ‖ σ) =
∑

i

pi

⎛

⎝log pi −
∑

j

Pij log qj

⎞

⎠

in which {pi} and {qj} are the eigenvalues of matrices ρ and σ and Pij =

〈Xi, Yj〉2 where {Xi} and {Yj} are the eigenvectors of matrices ρ and σ respec-
tively. The corresponding graph entropy relative to a matrix with same dimen-
sion n and maximum entropy, 1

nIn, is chosen to examine the pocket complexity
independent from its size:

S

(
ρ ‖ 1

n
In

)
= log n− S (ρ) .

Obviously when the graph entropy gets closer to the entropy of 1
nIn, the rel-

ative entropy decreases. Therefore, less relative Von Neumann entropy means
more complexity in the corresponding graph of pocket and consequently more
disorderliness in its structure.

To demonstrate that relative Von Neumann entropy does not change by pocket
size variation, we use the following result from [18] for almost every graph G,

S (G) = (1 + o (1)) logn.

This consequently results in:

S

(
G || 1

n
In

)
= o (1) logn.
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By the definition as n grows, o (1) approaches zero. Thus, the grow rate of relative
Von Neumann entropy is almost less than the logarithm of its size, which grows
slightly.

3.3 Test Dataset

A dataset of 48 bound/unbound structures first introduced in [4] is used to have
a comprehensive test over both ligand-bound and unbound structures. A widely
used method to check whether a pocket is the real binding pocket, is to measure
if its geometry center is within 4A◦ of the ligand atoms. Whenever more than
one pocket meet the condition, the one which is closer to the ligand is reported.
This method was firstly used in [4].

4 Results and Discussion

We used CASTp website 1 to detect protein pockets. Although it provides com-
prehensive information about pocket size, atoms and mouths, it does not give
simplices of each pocket. Therefore, to have Delaunay edges of pockets more than
their vertices reported by CASTp, we constructed those graphs by the use of
Computational Geometry Algorithms Library (CGAL)2 which provides access
to efficient geometric algorithms in the form of C++ library.

It is worth mentioning that weighted Delaunay triangulation is utilized as the
basic graph according to its two convenient features for the purpose of predict-
ing binding sites. First, since we want to examine the arrangement of points and
its effect on forming binding sites, it is necessary to select a geometric graph.
Delaunay triangulation is a geometric graph and is sensitive to the location of
vertices. Second, there is an appropriate relation between Delaunay triangulation
and void spheres in pockets. More precisely, every four vertices form a tetrahe-
dron in Delaunay triangulation if the sphere passing through them is empty of
any other points. Furthermore, these voids correspond to the regions in which
the ligand atoms probably stand. Therefore, it is worthwhile to examine the
distribution of them among protein surface when we want to predict the bind-
ing pockets. Indeed, Von Neumann entropy of Delaunay triangulation represents
the distribution of voids on pocket surface. In a more comprehensive study, it
is better to make use of dual complex of each pocket instead of its Delaunay
triangulation to achieve a more accurate graph for each pocket.

Although we apply relative version of Von Neumann to ignore the effects of
size, there are some small pockets with high entropy which are not eligible for
being binding sites regarding their tiny available surface to interact with ligands.
Figure 3 illustrates such examples.

To avoid taking those undesirable pockets to account as binding pockets, we
narrowed down the list of pockets to 10 largest pockets of each sample in 48
bound/unbound dataset. The results are shown in Table 1.

1 http://cast.engr.uic.edu
2 http://www.cgal.org

http://cast.engr.uic.edu
http://www.cgal.org 
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Fig. 3. Left: Extremely small pocket that has small relative Von Neumann entropy.
Right: A more desired pocket.

Table 1. Prediction success rate of size and relative Von Neumann entropy

Ranking feature
Bound Unbound

TOP1 TOP3 TOP1 TOP3

Pocket Size 67% 83% 58% 75%
Relative Von Neumann entropy 49% 77% 38% 83%

Table 2 shows the prediction success rate presented by different ranking meth-
ods adopted from [13] which is implemented on a same dataset. This is one of
the recent studies about examining pockets properties and makes use of [19] for
detecting protein pockets.

Table 2. Prediction success rate of different ranking features adopted from [13]

Methods
Unbound/Bound
TOP1 TOP3

Conservation score 57% 72%
Distance 56% 70%
Volume 44% 59%
Hidrophobic residues 30% 48%

We remind that pocket size is still the most successful feature to find binding
pockets. Exploring novel features, preferably independent from size, can improve
previous results. Pockets complexity measured by relative Von Neumann entropy
can predict TOP3 pockets very well especially for unbound samples where the
success rate even precedes previous results. In further studies, a hybrid criterion
consisting of both size and entropy can be investigated.
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Based on [17], Von Neumann entropy increases as graph edges scatter more
randomly. Hence, for fixed number of edges, perfect matching and complete
graph get maximum and minimum amount respectively. In particular, we have
found that according to Table 1 in candidate binding pockets the edges of Delau-
nay triangulation and equivalently voids are scattered more uniformly than other
pockets. In figure 4, two pockets with different edge distributions are shown. Ac-
cording to results, binding pockets are more likely to have a shape similar to left
side figure rather than right side one.
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Fig. 4. Left:A pocket with uniform distribution of edges Right: A pocket with irregular
distribution of edges

5 Conclusion

In this study we examined a novel feature in protein binding pockets based on
the complexity of corresponding geometric graphs. CASTp was utilized for de-
tecting pockets and weighted Delaunay triangulation was considered as pockets
graphs. It was illustrated that binding pockets usually acquire less relative Von
Neumann entropy which means more regular distribution of Delaunay edges and
consequently uniform scattering of voids. Regarding small dependency of rela-
tive Von Neumann to the size of graphs, one can merge them in future studies
to propose a comprehensive scoring criterion.
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